The graph of
passes through the points (-2, 3) and (1, 0), so
![f(-2)=3 \implies -8a + 4b - 2c + d = 3](https://img.qammunity.org/2020/formulas/mathematics/college/bmdhndyiam7t5bhhy2qj4h99wobdvrouuo.png)
![f(1) = 0 \implies a + b + c + d = 0](https://img.qammunity.org/2020/formulas/mathematics/college/bov7qe2v2bgdqwtofsqg6tdlb51k7559r7.png)
Since these are the sites of local extrema, we know that
and
are either zero or undefined.
is a polynomial, so it's continuous and differentiable everywhere, so only the zero-case is relevant.
We have derivative
![f'(x) = 3ax^2 + 2bx + c](https://img.qammunity.org/2020/formulas/mathematics/college/5ha02yl8luauop3pgqvtb56t0hyilms6xw.png)
and so
![f'(-2) = 0 \implies 12a - 4b + c = 0](https://img.qammunity.org/2020/formulas/mathematics/college/fr9xbjgdg3o1jmqa1b8909xau8dh15rvg3.png)
![f'(1) = 0 \implies 3a + 2b + c = 0](https://img.qammunity.org/2020/formulas/mathematics/college/jf5kqpsb6r97udvgpjrjis4pqk8cx2h5fy.png)
Solve for
.
• In the first two equations, we can eliminate
.
![(-8a+4b-2c+d) - (a+b+c+d) = 3-0 \implies -9a + 3b - 3c = 3](https://img.qammunity.org/2020/formulas/mathematics/college/vzxbvqqhjqr5kzp8d9ea238szx42858to8.png)
• Now eliminate
by combining any two equations in
.
![(12a-4b+c) - (3a+2b+c) = 0-0 \implies 9a-6b = 0 \implies 3a-2b=0](https://img.qammunity.org/2020/formulas/mathematics/college/jg3hfxdv6dolmv8z27smcv4r4s5lulgsa1.png)
![3(3a+2b+c) + (-9a+3b-3c) = 3(0)+3 \implies 9b = 3](https://img.qammunity.org/2020/formulas/mathematics/college/ufb4ee3wj8fve9n8b5v4iw5xdwkxnrdrpr.png)
Then we have
![9b = 3 \implies b = \frac13](https://img.qammunity.org/2020/formulas/mathematics/college/otdmusa6mytsx8ipnp7qhyvze68ayn2w8n.png)
![3a-2b=0 \implies 3a = \frac23 \implies a=\frac29](https://img.qammunity.org/2020/formulas/mathematics/college/8i0d9a9jg2poxietixghsa8yd92b2a8phz.png)
![3a+2b+c=0 \implies c = -\frac43](https://img.qammunity.org/2020/formulas/mathematics/college/l6y3f2esrxywk3l4pipu33juo7skqo7qhy.png)
![a+b+c+d=0 \implies d = \frac79](https://img.qammunity.org/2020/formulas/mathematics/college/flmyt7v1sbbk1ng7gb875pth6ikp1g5vwm.png)
and so the cubic function is
![\boxed{f(x) = \frac29 x^3 + \frac13 x^2 - \frac43 x + \frac79}](https://img.qammunity.org/2020/formulas/mathematics/college/hqwsosibi2yzay9252pud7u36g7p301jtw.png)