Check the forward differences of the sequence:
22 - 8 = 14
50 - 22 = 28 = 2*14
106 - 50 = 56 = 4*14
218 - 106 = 112 = 8*14
442 - 218 = 224 = 16*14
The differences are the products of increasing powers of 2 and 14:
![a_2-a_1=14\cdot2^0](https://img.qammunity.org/2020/formulas/mathematics/high-school/jqpdys7spmxf0rzqbp1ybrzfublx6wowue.png)
![a_3-a_2=14\cdot2^1](https://img.qammunity.org/2020/formulas/mathematics/high-school/so8vmpk1yc87917myng0rqwrib7ruquf89.png)
![a_4-a_3=14\cdot2^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/i26ctsgxjbbbwvwoqcgombcaowlva6kba0.png)
and so on, with
![a_n-a_(n-1)=14\cdot2^(n-2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tkxouxzzh1yem8mmpxz3f78ee41o8di5e9.png)
![\implies a_n=a_(n-1)+7\cdot2^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/snzqg5zsvypf06ryddjyietimwfxxq31tz.png)
Then the sequence has the recursive definition,
![\boxed{\begin{cases}a_1=8\\a_n=a_(n-1)+7\cdot2^(n-1)&\text{for }n>1\end{cases}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/yf1l5s22isihf7mwp0k4hpugar1npis7an.png)