Answer:
109.8 nm
Step-by-step explanation:
The first ionization energy of a hydrogen atom is,
![E=1.81aJ\\E=1.81* 10^(-18) J](https://img.qammunity.org/2020/formulas/physics/high-school/vt6j9ntb3gmwmobzrov7zi76263pcx9myh.png)
And Plank's constant,
![h=6.626* 10^(-34)Js](https://img.qammunity.org/2020/formulas/physics/high-school/dtqt5fu4xeu6h81vggdgtjx9zu795lcr32.png)
And the speed is,
![c=3* 10^(8)m/s](https://img.qammunity.org/2020/formulas/physics/high-school/9aed2hzxnb4kunnotj34r6jlf7mso06a9d.png)
Now the formula for energy will be,
![E=(hc)/(\lambda)](https://img.qammunity.org/2020/formulas/physics/college/45tzfa2w33ef1zdvz2ml0re9vfcfr1cgow.png)
Put all the variable after rearranging for lambda.
![\lambda=(6.626* 10^(-34)Js(3* 10^(8)m/s))/(1.81* 10^(-18) J) \\\lambda=10.98*10^(-8)m\\\lambda=109.8* 10^(-9)m\\\lambda=109.8 nm](https://img.qammunity.org/2020/formulas/physics/high-school/vyabcqiki316gb96fpco0arsqxjlmxripr.png)
Therefore the wavelength of light is 109.8 nm to ionize a carbon atom .