Answer:
4.0921 is the logarithm of the equilibrium constant.
Explanation:
; E° = - 0.41 V
; E° = 0.80 V
Iron having negative value of reduction potential .So ,that means that it will loose electron easily and get oxidized.Hence, will be at anode.
=Reduction potential of cathode - Reduction potential of anode
![E^(o)_(cell)=E^(o)_c-E^(o)_a](https://img.qammunity.org/2020/formulas/mathematics/high-school/ta3p6vq0r7ca5hcku91p75xtwj1fe0olj6.png)
![=0.80 V-(-0.41 V)=1.21 V](https://img.qammunity.org/2020/formulas/mathematics/high-school/irxgh8thn9psz55sixcoy24d1j9xcyhi3a.png)
; E° = - 0.41 V
; E° = 0.80 V
Net reaction:
![Fe(s)+2Ag^(+)\rightarrow Fe^(2+)+2Ag(s)](https://img.qammunity.org/2020/formulas/mathematics/high-school/wtfqiul6j0yvttydrvwh07y3ce4mae3f8n.png)
n = 2
To calculate equilibrium constant, we use the relation between Gibbs free energy, which is:
![\Delta G^o=-nfE^o_(cell)](https://img.qammunity.org/2020/formulas/chemistry/college/5suabluwhid2t32nmfea8pzxek36vuo65f.png)
and,
![\Delta G^o=-RT\ln K_(eq)](https://img.qammunity.org/2020/formulas/chemistry/college/p3lyd6w2kyon2sl7jrfqa7pminw2fc2eyv.png)
Equating these two equations, we get:
![nfE^o_(cell)=RT\ln K_(eq)](https://img.qammunity.org/2020/formulas/chemistry/college/vpxl80s1h890szewjlu0m3d1xvn2j23kl6.png)
where,
n = number of electrons transferred = 2
F = Faraday's constant = 96500 C
= standard electrode potential of the cell = 1.21 V
R = Gas constant = 8.314 J/K.mol
T = temperature of the reaction =
![25^oC=[273+25]=298K](https://img.qammunity.org/2020/formulas/chemistry/college/6emvaajqo5qvucrhq2qn2dbo2gul9o60b4.png)
Putting values in above equation, we get:
![2* 96500* 1.21 V=8.314* 298* \ln K_(eq)](https://img.qammunity.org/2020/formulas/mathematics/high-school/oxdty6gqvt5x9xskv01wji5bt6dbfsbdxh.png)
![\ln K_(eq)=9.3478](https://img.qammunity.org/2020/formulas/mathematics/high-school/eb0qy76ul8zo1xkirqfxdj1cu84nivhqsd.png)
![\log K_(eq)=(9.3478)/(2.303)=4.0921](https://img.qammunity.org/2020/formulas/mathematics/high-school/ix7d64n8ci9xoakgncg4ewx362ekx7k5ux.png)
4.0921 is the logarithm of the equilibrium constant.