Answer:
1.
![P(s_1|I)=(1)/(11)](https://img.qammunity.org/2020/formulas/mathematics/college/hzws613zc7uqnepthnju77omq3a7wnygsv.png)
2.
![P(s_2|I)=(8)/(11)](https://img.qammunity.org/2020/formulas/mathematics/college/pnj5zpfnbl9rhhapuq8ho306z8sh5xa1ti.png)
3.
![P(s_3|I)=(2)/(11)](https://img.qammunity.org/2020/formulas/mathematics/college/6r3py1ltlajzd0co05lwynwzl6pfd7g00z.png)
Explanation:
Given information:
![P(s_1)=0.1, P(s_2)=0.6, P(s_3)=0.3](https://img.qammunity.org/2020/formulas/mathematics/college/5kgzpak7bjcdrvptjcdb9d3b0jf77vup2p.png)
![P(I|s_1)=0.15,P(I|s_2)=0.2,P(I|s_3)=0.1](https://img.qammunity.org/2020/formulas/mathematics/college/3ukcc1zlv75in6pbmi3p0xz5vy39onu5ei.png)
(1)
We need to find the value of P(s₁|I).
![P(s_1|I)=(P(I|s_1)P(s_1))/(P(I|s_1)P(s_1)+P(I|s_2)P(s_2)+P(I|s_3)P(s_3))](https://img.qammunity.org/2020/formulas/mathematics/college/wsan0umuvp2hgia6erfap65if6bdpkifgw.png)
![P(s_1|I)=((0.15)(0.1))/((0.15)(0.1)+(0.2)(0.6)+(0.1)(0.3))](https://img.qammunity.org/2020/formulas/mathematics/college/20k5aqvgi4a9jr4r4zwuny5e20yi4mrdmg.png)
![P(s_1|I)=(0.015)/(0.015+0.12+0.03)](https://img.qammunity.org/2020/formulas/mathematics/college/whj6btjzuk1dwe5zmmve0rxj149q0e6119.png)
![P(s_1|I)=(0.015)/(0.165)](https://img.qammunity.org/2020/formulas/mathematics/college/4luqa3v0tohujlo4a5gws9i6nxcj576trk.png)
![P(s_1|I)=(1)/(11)](https://img.qammunity.org/2020/formulas/mathematics/college/hzws613zc7uqnepthnju77omq3a7wnygsv.png)
Therefore the value of P(s₁|I) is
.
(2)
We need to find the value of P(s₂|I).
![P(s_2|I)=(P(I|s_2)P(s_2))/(P(I|s_1)P(s_1)+P(I|s_2)P(s_2)+P(I|s_3)P(s_3))](https://img.qammunity.org/2020/formulas/mathematics/college/rlpus36ht1kdo89uoiurtw9zpci6qrerbb.png)
![P(s_2|I)=((0.2)(0.6))/((0.15)(0.1)+(0.2)(0.6)+(0.1)(0.3))](https://img.qammunity.org/2020/formulas/mathematics/college/uzu4dofjr4ffq0o89vfwuy43y4lcmxdrur.png)
![P(s_2|I)=(0.12)/(0.015+0.12+0.03)](https://img.qammunity.org/2020/formulas/mathematics/college/aferpypew8ws70xqqx9dp1cdfbvyiuz05w.png)
![P(s_2|I)=(0.12)/(0.165)](https://img.qammunity.org/2020/formulas/mathematics/college/vy9213zx6eoppzdbddqwizlaoih0190ttu.png)
![P(s_2|I)=(8)/(11)](https://img.qammunity.org/2020/formulas/mathematics/college/pnj5zpfnbl9rhhapuq8ho306z8sh5xa1ti.png)
Therefore the value of P(s₂|I) is
.
(3)
We need to find the value of P(s₃|I).
![P(s_3|I)=(P(I|s_3)P(s_3))/(P(I|s_1)P(s_1)+P(I|s_2)P(s_2)+P(I|s_3)P(s_3))](https://img.qammunity.org/2020/formulas/mathematics/college/u73advsiqw5mn311kyokdwtllbg0a4ltau.png)
![P(s_3|I)=((0.1)(0.3))/((0.15)(0.1)+(0.2)(0.6)+(0.1)(0.3))](https://img.qammunity.org/2020/formulas/mathematics/college/7yxsqmj9a9tnqhgeqk8jdzk0q7faogpu27.png)
![P(s_3|I)=(0.03)/(0.015+0.12+0.03)](https://img.qammunity.org/2020/formulas/mathematics/college/q304idj7umlgacnxufd1l25kugt0f9ly5y.png)
![P(s_3|I)=(0.03)/(0.165)](https://img.qammunity.org/2020/formulas/mathematics/college/85qfgjpyids5k0uipuyo5ymvqk16n5gi1d.png)
![P(s_3|I)=(2)/(11)](https://img.qammunity.org/2020/formulas/mathematics/college/6r3py1ltlajzd0co05lwynwzl6pfd7g00z.png)
Therefore the value of P(s₃|I) is
.