86.7k views
3 votes
Probabilities with possible states of nature: s1, s2, and s3. Suppose that you are given a decision situation with three possible state of nature: s1, s2, and s3.The prior probabilities are P(s1) =.1, P(s2) = .6, and P(s3) = .3.With sample information I, P(I|s1) =.15, P(I|s2) = .2, and P(I|s3) = .1.Compute P(s1|I)Compute P(s2|I)Compute P(s3|I)

User Slamora
by
4.6k points

1 Answer

4 votes

Answer:

1.
P(s_1|I)=(1)/(11)

2.
P(s_2|I)=(8)/(11)

3.
P(s_3|I)=(2)/(11)

Explanation:

Given information:


P(s_1)=0.1, P(s_2)=0.6, P(s_3)=0.3


P(I|s_1)=0.15,P(I|s_2)=0.2,P(I|s_3)=0.1

(1)

We need to find the value of P(s₁|I).


P(s_1|I)=(P(I|s_1)P(s_1))/(P(I|s_1)P(s_1)+P(I|s_2)P(s_2)+P(I|s_3)P(s_3))


P(s_1|I)=((0.15)(0.1))/((0.15)(0.1)+(0.2)(0.6)+(0.1)(0.3))


P(s_1|I)=(0.015)/(0.015+0.12+0.03)


P(s_1|I)=(0.015)/(0.165)


P(s_1|I)=(1)/(11)

Therefore the value of P(s₁|I) is
(1)/(11).

(2)

We need to find the value of P(s₂|I).


P(s_2|I)=(P(I|s_2)P(s_2))/(P(I|s_1)P(s_1)+P(I|s_2)P(s_2)+P(I|s_3)P(s_3))


P(s_2|I)=((0.2)(0.6))/((0.15)(0.1)+(0.2)(0.6)+(0.1)(0.3))


P(s_2|I)=(0.12)/(0.015+0.12+0.03)


P(s_2|I)=(0.12)/(0.165)


P(s_2|I)=(8)/(11)

Therefore the value of P(s₂|I) is
(8)/(11).

(3)

We need to find the value of P(s₃|I).


P(s_3|I)=(P(I|s_3)P(s_3))/(P(I|s_1)P(s_1)+P(I|s_2)P(s_2)+P(I|s_3)P(s_3))


P(s_3|I)=((0.1)(0.3))/((0.15)(0.1)+(0.2)(0.6)+(0.1)(0.3))


P(s_3|I)=(0.03)/(0.015+0.12+0.03)


P(s_3|I)=(0.03)/(0.165)


P(s_3|I)=(2)/(11)

Therefore the value of P(s₃|I) is
(2)/(11).

User Yixing Lao
by
5.7k points