Answer:
(a) The general solution of given differential equation is
.
(b) The unique solution is
.
Explanation:
(a)
The given differential equation is
![(dy)/(dt)=(t)/(y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/p8493t6uhl8h2i6c03rsyw1lw8u11pg02u.png)
Use variable separable method, to solve the above differential equation.
Separate the variables.
![y^2dy=tdt](https://img.qammunity.org/2020/formulas/mathematics/college/4iaqwao07rz2qfb1hairj33a4nglzo8sbe.png)
Integrate both sides.
![\int y^2dy=\int tdt](https://img.qammunity.org/2020/formulas/mathematics/college/boiva86424236cdiez0ghors69uxogto3h.png)
![(y^3)/(3)=(t^2)/(2)+C](https://img.qammunity.org/2020/formulas/mathematics/college/nedkxhnl2gl7oses2n28hcyh9if8nrybml.png)
The general solution of given differential equation is
.
(b)
The given differential equation is
![(dy)/(dt)=(1)/(y)](https://img.qammunity.org/2020/formulas/mathematics/college/khg59vkn5rywmo36bjqnilmqr2i4ohv2vv.png)
Use variable separable method, to solve the above differential equation.
Separate the variables.
![ydy=1dt](https://img.qammunity.org/2020/formulas/mathematics/college/lrtwpxyfou4ao7etmz7mxmdbpgdq0wmjbu.png)
Integrate both sides.
![\int ydy=\int 1dt](https://img.qammunity.org/2020/formulas/mathematics/college/b9nouwngsn1n1yy6wr0ti23wnuojzn6mov.png)
... (1)
It is given that y=1 at t=3. Substitute y=1 and t=3 in the above equation.
![((1)^2)/(2)=(3)+C](https://img.qammunity.org/2020/formulas/mathematics/college/hof56amebrv9dc471l6op8mcvhlt09mc0s.png)
![(1)/(2)-3=C](https://img.qammunity.org/2020/formulas/mathematics/college/5h2f1tm9dlbi4ld2lfgutkhbhcvnzy5ex5.png)
![-(5)/(2)=C](https://img.qammunity.org/2020/formulas/mathematics/college/l202pa0rpa6t75o6m4dqut2u6zne7l1rem.png)
Substitute
in equation (1).
![(y^2)/(2)=t-(5)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/wgfao13l3z1krro5lr4tnkr24qksvp2eh7.png)
Therefore the unique solution is
.