Answer:
48.2842 units is the perimeter of the parallelogram.
Explanation:
Area of the parallelogram = Base × Height
Base of the parallelogram,b = 10 units
Height of the parallelogram = h units
![A=b* h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wqcasvra40y4r2m9nhb87mwea6gzltllah.png)
![100 unit^2=10 units* h](https://img.qammunity.org/2020/formulas/mathematics/high-school/jbsjgaoe7c345vo8jvsfi3wrl1gig47mp2.png)
h = 10 units
In triangle , ABC
![\sin 45^oC=(AC)/(AB)=(10)/(s)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vpcc5p1hxegue18z1ikhwilbeyx1oueeah.png)
Side of the parallelogram AB = s =14.1421 units
Perimeter of parallelogram : 2(s+b) = 2(14.1421+10) units=48.2842 units.