Answer:
The perimeter of the rectangle B C E F is 16.97 units
Explanation:
* Lets explain how to solve the problem
- B C E F is a rectangle
- The perimeter of the rectangle is the sum of the length of its
four sides
- The coordinates of the vertices of the rectangle are:
B (0 , 3) , C (4 , -1) , E (2 , -3) , F (-2 , 1)
- To find the dimensions of the rectangle use the rule of distance
d =
* Lets solve the problem
∵
![(BC)=\sqrt{(4-0)^(2)+(-1-3)^(2)}=√(16+16)=√(32)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/su8meb6i46o6qdih5tfy887bn329urcp4z.png)
∵
![(CE)=\sqrt{(2-4)^(2)+(-3--1)^(2)}=√(4+4)=√(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kh88tt7ixigbhy13bl3ya6p4rdz5s7sdqm.png)
∵
![(FE)=\sqrt{(2--2)^(2)+(-3-1)^(2)}=√(16+16)=√(32)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jz0213rmoojlms9o2wxheb3480gl65k01m.png)
∵
![(BF)=\sqrt{(-2-0)^(2)+(1-3)^(2)}=√(4+4)=√(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/titsfcxzog38lzeitnijehh1kti3g95k3x.png)
∵ The perimeter of the rectangle = BC + CE + FE + BF
∴ The perimeter =
![√(32)+√(8)+√(32)+√(8)=16.97](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ev4m5rrji8bveov0iq8q732efocybqsbbo.png)
∴ The perimeter of the rectangle B C E F is 16.97 units