Answer: 1.303639
Explanation:
The t-score for a level of confidence
is given by :_
, where df is the degree of freedom and
is the significance level.
Given : Level of significance :
![1-\alpha:0.80](https://img.qammunity.org/2020/formulas/mathematics/college/99d0o6dmxroy3j5vcim0fv2taidw9mj6pa.png)
Then , significance level :
![\alpha: 1-0.80=0.20](https://img.qammunity.org/2020/formulas/mathematics/college/vvnhamzd4ayqhdzqbtsa1w4e7oa8dmt5ob.png)
Sample size :
![n=40](https://img.qammunity.org/2020/formulas/mathematics/high-school/j76e4onwze7c8aph0scscgs66zfomz438l.png)
Then , the degree of freedom for t-distribution:
![df=n-1=40-1=39](https://img.qammunity.org/2020/formulas/mathematics/college/bzocye5qqnk4r1pz16yrp3oxuea7ced6ve.png)
Using the normal t-distribution table, we have
![t_((df,\alpha/2))=t_(39,0.10)=1.303639](https://img.qammunity.org/2020/formulas/mathematics/college/bfql17hkurn1ki40g73nspg8zo6ikijcrn.png)
Thus, the t-score should be used to find the 80% confidence interval for the population mean =1.303639