Answer:
34°
Explanation:
We need to use the law of cosines to find angle J.
![11^(2)=19^(2) +13^(2) -2(19)(13)cos(J)\\121=361+169-494cos(J)\\121=530-494cos(J)\\121-530=-494cos(J)\\-409=-494cos(J)\\cos(J)=(-409)/(-494) \approx 0.8\\ J \approx cos^(-1)((409)/(494) ) \approx 34\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5pp0kryk3qdrpvmh2lzi1doxnlt0sjddpm.png)
Therefore, the right answer is the second choice, 34°.
Remember, when you apply the law of cosines, the first square in the formula must be the opposite side to the angle we want to find.