42.1k views
4 votes
For the straight line defined by the points (4,57) and (6,91) , determine the slope ( m ) and y-intercept ( ???? ). Do not round the answers.

User Arpymastro
by
8.0k points

1 Answer

4 votes


\bf (\stackrel{x_1}{4}~,~\stackrel{y_1}{57})\qquad (\stackrel{x_2}{6}~,~\stackrel{y_2}{91}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{91}-\stackrel{y1}{57}}}{\underset{run} {\underset{x_2}{6}-\underset{x_1}{4}}}\implies \cfrac{34}{2}\implies 17 \\\\\\ \begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{57}=\stackrel{m}{17}(x-\stackrel{x_1}{4})\implies y-57=17x-68


\bf y=17x-11\impliedby \begin{array} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}\qquad \qquad \begin{cases} \stackrel{slope}{17}\\\\ \stackrel{y-intercept}{(0,-11)} \end{cases}

User Greg Hill
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories