Answer: 1.467
Explanation:
Formula of Margin of Error for (n<30):-
![E=t_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/i0xvjb8j112byk8tclan9mcnziekq02rbv.png)
Given : Sample size : n= 22
Level of confidence = 0.90
Significance level :
![\alpha=1-0.90=0.10](https://img.qammunity.org/2020/formulas/mathematics/college/gh2zkpmg7w2illybrnkip3utipm4q6mucv.png)
By using the t-distribution table ,
Critical value :
![t_(n-1, \alpha/2)=t_(21,0.05)= 1.720743](https://img.qammunity.org/2020/formulas/mathematics/college/fuspty9iw72rsgppk2bdd499fsp6f3w2sn.png)
Standard deviation:
![\sigma=4](https://img.qammunity.org/2020/formulas/mathematics/high-school/kgkghr1xf9gftncmhd5sp93gc9vlvy83gb.png)
Then, we have
![E=(1.720743)(4)/(√(22))=1.46745456106\approx1.467](https://img.qammunity.org/2020/formulas/mathematics/college/n8une87zcxdk60pom1dy724is6r89lzz1i.png)
Hence, the margin of error for the confidence interval for the population mean with a 90% confidence level =1.467