52.7k views
0 votes
How to solve this indefinite integral? ​

How to solve this indefinite integral? ​-example-1
User Hungry
by
5.6k points

1 Answer

2 votes

Integrate by parts; by the product rule for derivatives, we have


(u(x)v(x))'=u'(x)v(x)+u(x)v'(x)\implies u(x)v'(x)=(u(x)v(x))'-u'(x)v(x)


\implies\displaystyle\int u(x)v'(x)\,\mathrm dx=u(x)v(x)-\int u'(x)v(x)\,\mathrm dx

or more succinctly,


\displaystyle\int u\,\mathrm dv=uv-\int v\,\mathrm du

Let


u=x\implies\mathrm du=\mathrm dx


\mathrm dv=\cos x\,\mathrm dx\implies v=\sin x

Then


\displaystyle\int x\cos x\,\mathrm dx=x\sin x-\int\sin x\,\mathrm dx

so that


\displaystyle\int x\cos x\,\mathrm dx=\boxed{x\sin x+\cos x+C}

User Astrom
by
6.5k points