9.4k views
4 votes
Jillian’s school is selling tickets for a play. The tickets cost $10.50 for adults and $3.75 for students. The ticket sales for opening night totaled $2071.50. The equation 10.50 a plus 3.75 b equals 2071.50, where a is the number of adult tickets sold and b is the number of student tickets sold, can be used to find the number of adult and student tickets. If 82 students attended, how may adult tickets were sold?

User Pampy
by
8.7k points

2 Answers

5 votes

Answer:

168

Explanation:

User James Trickey
by
7.6k points
6 votes

Answer:

The number of the adult tickets is 168

Explanation:

* Lets explain how to solve the problem

- The adults ticket costs $10.50

- The students ticket costs $3.75

- The total money of the opening night is $2071.50

- The equation of the total money earned in the opening night is:

10.50 a + 3.75 b = 2071.50, where a is the number of the adult ticket

and b is the number of the student ticket

- There were 82 students attended

* Lets solve the problem

∵ 10.50 a + 3.75 b = 2071.50

∵ The number of the students attended is 82

∵ b is the number of the students

b = 82

- Substitute the value of b in the equation

∴ 10.50 a + 3.75(82) = 2071.50

∴ 10.50 a + 307.5 = 2071.50

- Subtract 307.5 from both sides

∴ 10.50 a = 1764

- Divide both sides by 10.50

a = 168

∵ a is the number of the adult tickets

The number of the adult tickets is 168

User Duffn
by
7.7k points