Answer:
![(17.14,\ 22.86)](https://img.qammunity.org/2020/formulas/mathematics/college/pp36nfxypwz7a1nckacgd4bskwsbnowckr.png)
Explanation:
The confidence interval estimate for the population mean is given by :-
, where
is the sample mean and ME is the margin of error.
Given : Sample mean:
![\overline{x}=20](https://img.qammunity.org/2020/formulas/mathematics/college/b9xyzwfniw1zucrt4fztcfvradd64p4fn4.png)
The margin of error for a 98% confidence interval estimate for the population mean using the Student's t-distribution :
![ME=2.86](https://img.qammunity.org/2020/formulas/mathematics/college/vz81ophf9vm9sg5ykb7ozpsvp9nvuwnhcd.png)
Now, the confidence interval estimate for the population mean will be :-
![20\pm2.86=(20-2.86,\ 20+2.86)=(17.14,\ 22.86)](https://img.qammunity.org/2020/formulas/mathematics/college/c51484u1tdgdzk2e2177ohsmsr2vbs97gk.png)
Hence, the 98% confidence interval estimate for the population mean using the Student's t-distribution =
![(17.14,\ 22.86)](https://img.qammunity.org/2020/formulas/mathematics/college/pp36nfxypwz7a1nckacgd4bskwsbnowckr.png)