152k views
0 votes
The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC = 90, what is the area of triangle ABC?(A) 102(B) 120(C) 132(D) 144(E) 156

User Austensen
by
4.7k points

1 Answer

2 votes

Answer:

A:102

Explanation:

We are given that the points A(0,0),B(0,4a-5) and C(2a-+1,2a+6) form a triangle.

If angle ABC=
90^(\circ)

We have to find the area of triangle ABC

If angle ABC= 90 degree

From given below figure


4a-5=2a+6


4a-2a=6+5


2a=11


a=(11)/(2)=5.5

Substitute the values then we get

B(0,17) and C (12,17)

Distance formula


√((x_2-x_1)^2+(y_2-y_1)^2)

AB=
√((0-0)^2+(17-0)^2)=17 units

BC=
√((12-0)^2+(17-17)^2)

BC=
√(144+0)=√(144)=12 units

Area of triangle =
(1)/(2)* b* h

Substitute the values

Then we get

Area of triangle ABC=
(1)/(2)* 17* 12

Area of triangle ABC=102 square units

Answer: A: 102

The points A(0, 0), B(0, 4a - 5) and C(2a + 1, 2a + 6) form a triangle. If angle ABC-example-1
User Makazau
by
5.3k points