Answer:
![31.28\leq\sigma^2\leq99.29](https://img.qammunity.org/2020/formulas/mathematics/college/h18dhg48i7sl1n4nu4psxdpq1bxwbzbxw6.png)
Explanation:
Confidence interval formula for population variance :-
![((n-1)s^2)/(\chi^2_(\alpha/2))\leq \sigma^2\leq((n-1)s^2)/(\chi^2_(1-\alpha/2))](https://img.qammunity.org/2020/formulas/mathematics/college/qf2wn9au1pmmbxvnforadrrp4wmeybqtst.png)
Given :
and
![n= 25](https://img.qammunity.org/2020/formulas/mathematics/college/b4tiddkgo33vs3289hdy4uscmotrm8lznt.png)
Significance level :
![\alpha=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/o3op132eurfz836qnoznjuckj0omh3ecx4.png)
Using chi-square distribution, the Critical values are:
![\chi^2_(n-1, \alpha/2)=\chi^2_(24,0.025)=39.36](https://img.qammunity.org/2020/formulas/mathematics/college/p18smpmvtwgv90jz4t0v12bsbo1cbgagfx.png)
![\chi^2_(n-1, 1-\alpha/2)=\chi^2_(24,0.025)=12.40](https://img.qammunity.org/2020/formulas/mathematics/college/kopy3ab925sddmc37k8hhx5496h82ha3hn.png)
Then, the confidence interval for population variance is given by :-
![((24)( 51.3))/(39.36)\leq \sigma^2\leq((24)( 51.3))/(12.40)\\\\\approx31.28\leq\sigma^2\leq99.29](https://img.qammunity.org/2020/formulas/mathematics/college/cpq2c70ok6a2hgmtdi41rledjzefu814tc.png)
Hence, the 95% confidence interval for the population variance :
![31.28\leq\sigma^2\leq99.29](https://img.qammunity.org/2020/formulas/mathematics/college/h18dhg48i7sl1n4nu4psxdpq1bxwbzbxw6.png)