Answer: . a. 36.08 to 78.80
Explanation:
The confidence interval for population standard deviation is given by :-
![\sqrt{((n-1)s^2)/(\chi_(\alpha/2))}<\sigma\sqrt{((n-1)s^2)/(\chi_(1-\alpha/2))}](https://img.qammunity.org/2020/formulas/mathematics/college/exoa1ociqa17kjb858r022oe5jaw6mf43s.png)
Given : Sample size =
![n=24](https://img.qammunity.org/2020/formulas/mathematics/college/agz72jlqrh6ejouwtd7rmbzko2wd29eyo4.png)
Significance level :
![\alpha:1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/4luqlyffsmoibptr1pdun8gze7b60dqc4i.png)
Using the chi-square distribution table , the critical values would be :-
![\chi_(n-1,\alpha/2)=\chi_(23, 0.005)=44.18127525](https://img.qammunity.org/2020/formulas/mathematics/college/2mmaa90zzkgwea86wmuwej4atl350a4iuk.png)
![\chi_(n-1,1-\alpha/2)=\chi_(23, 0.995)=9.26042478](https://img.qammunity.org/2020/formulas/mathematics/college/rt6t0px4rx5vvfw6hws6bferxh67l1zn6c.png)
Then , a 99% confidence interval for the population standard deviation will be :-
![\sqrt{((23)(50)^2)/(44.18127525)}<\sigma\sqrt{((23)(50)^2)/(9.26042478)}\\\\=36.075702658<\sigma<78.7985939401\\\\\approx36.08<\sigma<78.80](https://img.qammunity.org/2020/formulas/mathematics/college/ckcf8odfojhqvqi1hqdp75jz0bjj5y6dnj.png)