Answer:
−6y((5x−3y)^2 +(5x−3y)(5x+3y)+(5x+3y)^2)
Explanation:
Use Difference of Cubes : a^3 - b^3 = (a-b)*(a^2+ab+b^2)
= (5x - 3y - (5x+3y))*((5x-3y)^2 + (5x-3y)*(5x+3y)+(5x+3y)^2)
Simplify brackets:
= (5x−3y−5x−3y)((5x−3y)^2+(5x−3y)(5x+3y)+(5x+3y)^2)
Collect like temrs:
= ((5x−5x)+(−3y−3y))((5x−3y)^2+(5x−3y)(5x+3y)+(5x+3y)^2)
Simplify:
= −6y((5x−3y)^2 +(5x−3y)(5x+3y)+(5x+3y)^2)
Simpliest form it can get!
Hope this helped :3