128k views
2 votes
How to solve this indefinite integral? ​

How to solve this indefinite integral? ​-example-1
User Sema
by
7.8k points

1 Answer

5 votes


\displaystyle\int(3x)/(\cos^2(2x^2))\,\mathrm dx

Substitute
y=2x^2, so that
\mathrm dy=4x\,\mathrm dx:


\displaystyle\int(3x)/(\cos^2(2x^2))\,\mathrm dx=\frac34\int(4x)/(\cos^2(2x^2))\,\mathrm dx=\frac34\int(\mathrm dy)/(\cos^2y)

Then


\frac1{\cos^2y}=\sec^2y=(\mathrm d)/(\mathrm dy)[\tan y]

so that the integral wrt
y comes out to be


\displaystyle\frac34\int\sec^2y\,\mathrm dy=\frac34\tan y+C

Replace
y to solve for the integral wrt
x:


\displaystyle\int(3x)/(\cos^2(2x^2))\,\mathrm dx=\boxed{\frac34\tan(2x^2)+C}

User Uris
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories