67.5k views
5 votes
Simplify tan9x-tan5x / 1+tan9xtan5x
(SHOW WORK)

1 Answer

1 vote

Answer:

The simplest form is tan(4x)

Explanation:

* Lets revise the identity of the compound angles

-
tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))

-
tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))

* Lets solve the problem

- Let 9x = 5x + 4x

∴ tan(9x) = tan(5x + 4x)

- Use the rule of the compound angle


(tan(9x)-tan(5x))/(1+tan(9x)tan(5x)) ⇒ (1)


tan(5x+4x)=(tan(5x)+tan(4x))/(1-tan(5x)tan(4x)) ⇒ (2)

∵ tan(9x) = equation (2)

- Substitute (2) in (1)


((tan(5x)+tan(4x))/(1-tan(5x)tan(4x))-tan(5x))/(1+((tan(5x)+tan(4x))/(1-tan(5x)tan(4x)))tan(5x))

- Multiply up and down by (1 - tan(5x)tan(4x))


(tan(5x)+tan(4x)-tan(5x)[1-tan(5x)tan(4x)])/(1-tan(5x)tan(4x)+tan(5x)[tan(5x)+tan(4x)])

- Simplify up and down


(tan(5x)+tan(4x)-tan(5x)+tan^(2)(5x)tan(4x))/(1-tan(5x)tan(4x)+tan^(2)(5x)+tan(5x)tan(4x) )


(tan(4x)+tan^(2)(5x)tan(4x))/([1+tan^(2)(5x)])

- Take tan(4x) as a common factor up


(tan(4x)[1+tan^(2)(5x)])/([1+tan^(2)(5x)])

- Cancel [1 + tan²(5x)] up and down

The answer is tan(4x)

User Lakeishia
by
8.4k points

Related questions

asked Sep 15, 2020 70.3k views
Calley asked Sep 15, 2020
by Calley
8.8k points
1 answer
4 votes
70.3k views
asked Jun 26, 2019 116k views
Steve Crook asked Jun 26, 2019
by Steve Crook
7.9k points
1 answer
2 votes
116k views