Answer:
Part 1)
![30< 6x< 48](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lpuui2g0vfe4joug46xx0ikp7rnxyt2sph.png)
Part 2)
![-80< -10x< -50](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qr56aao443xt0ct4gz6f0bv4q10dpjs1um.png)
Part 3)
![0<x-5< 3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yhb6fjmcxri2dm6gx17of1g57to9tshc99.png)
Part 4)
![17< 3x+2< 26](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7lh3c8svilxpuv9sx222gx7oj9itimisxx.png)
Explanation:
we know that
![5< x< 8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f2pbnc17buyp6ldd7shkl0p1cmd5vut63q.png)
The solution for x is the interval ----> (5,8)
All real numbers greater than 5 and less than 8
Part 1) Find all possible values of the expression 6x
so
For x < 8
The expression value is 6x < (6)(8) -----> 6x < 48
For x > 5
The expression value is 6x > (6)(5) -----> 6x > 30
therefore
![30< 6x< 48](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lpuui2g0vfe4joug46xx0ikp7rnxyt2sph.png)
Part 2) Find all possible values of the expression -10x
so
For x < 8
The expression value is -10x > (-10)(8) -----> -10x > -80
For x > 5
The expression value is -10x < (-10)(5) -----> -10x < -50
therefore
![-80< -10x< -50](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qr56aao443xt0ct4gz6f0bv4q10dpjs1um.png)
Part 3) Find all possible values of the expression x-5
so
For x < 8
The expression value is x-5 < 8-5 -----> x-5 < 3
For x > 5
The expression value is x-5 > 5-5 -----> x-5 > 0
therefore
![0<x-5< 3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yhb6fjmcxri2dm6gx17of1g57to9tshc99.png)
Part 4) Find all possible values of the expression 3x+2
so
For x < 8
The expression value is 3x+2 < 3(8)+2 -----> 3x+2 < 26
For x > 5
The expression value is 3x+2 > 3(5)+2 -----> 3x+2 > 17
therefore
![17< 3x+2< 26](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7lh3c8svilxpuv9sx222gx7oj9itimisxx.png)