Answer:
Both are not inverse functions.
Explanation:
To find : Determine whether each pair of functions are inverse functions ?
Solution :
To determine the functions has to satisfy the condition,
![f(g(x))=x=g(f(x))](https://img.qammunity.org/2020/formulas/mathematics/college/4v7f3to2jnn0oa3pfomo83vwnud948cjfw.png)
1)
![f(x) = 8x-10,\ g(x) = (x + 10)](https://img.qammunity.org/2020/formulas/mathematics/college/5hetuzuand9an0d7oec5scgsruluzr60x9.png)
![f(g(x))=f(x+10)](https://img.qammunity.org/2020/formulas/mathematics/college/tkrrrfeffdbgpchn9ksjaqh6ape5j4lywg.png)
![f(g(x))=8(x+10)-10](https://img.qammunity.org/2020/formulas/mathematics/college/p3au31f9wh2y7pkr6m7rfk9751z0qfxbez.png)
![f(g(x))=8x+80-10](https://img.qammunity.org/2020/formulas/mathematics/college/zgsrrj4g2fbdxie4t7hizmeo30f30gou7g.png)
![f(g(x))=8x+70](https://img.qammunity.org/2020/formulas/mathematics/college/peew99ly14t5bpjhmfde06edbs3mrep73o.png)
As
![f(g(x))\\eq x](https://img.qammunity.org/2020/formulas/mathematics/college/nukjpbwvlcxlbfqyqsjctki7e31n681jaw.png)
![g(f(x))=g(8x-10)](https://img.qammunity.org/2020/formulas/mathematics/college/yyh54aibj8qwtrp2szbgob9f7znbruej7u.png)
![g(f(x))=8x-10+10](https://img.qammunity.org/2020/formulas/mathematics/college/8lahqqsb31ujcbclxfywet932gkph7mfbq.png)
![g(f(x))=8x](https://img.qammunity.org/2020/formulas/mathematics/college/m8bog275r56sbjxj28ntdwssn6h7kpc6tq.png)
As the condition is not satisfied.
2)
![f(x) =4x+5,\ g(x) =4x-5](https://img.qammunity.org/2020/formulas/mathematics/college/6nprmpmexkj2pj65mg4v1qbfmu1l10216p.png)
![f(g(x))=f(4x-5)](https://img.qammunity.org/2020/formulas/mathematics/college/vajjfdxnn5qwy1s86metsrnipq541gx0np.png)
![f(g(x))=4(4x-5)+5](https://img.qammunity.org/2020/formulas/mathematics/college/si83r43mpspxmzl7dwehld7opf1560vdst.png)
![f(g(x))=16x-20+5](https://img.qammunity.org/2020/formulas/mathematics/college/zlguy9f46ge7puywf2xmqrtrqoa2s5nqv8.png)
![f(g(x))=16x-15](https://img.qammunity.org/2020/formulas/mathematics/college/fs8itejqam2bs19wiee7s9haresy3ty6gs.png)
As
![f(g(x))\\eq x](https://img.qammunity.org/2020/formulas/mathematics/college/nukjpbwvlcxlbfqyqsjctki7e31n681jaw.png)
![g(f(x))=g(4x+5)](https://img.qammunity.org/2020/formulas/mathematics/college/3rp5pxxt5fgzst0uwxnemf7utp1lv03mki.png)
![g(f(x))=4(4x+5)-5](https://img.qammunity.org/2020/formulas/mathematics/college/lg4pxu55mj5hdka17701rptm92t9g4vkmz.png)
![g(f(x))=16x+20-5](https://img.qammunity.org/2020/formulas/mathematics/college/9m1jgq181silz1xmnyv0qw6rw9d7o2mrvr.png)
![g(f(x))=16x+15](https://img.qammunity.org/2020/formulas/mathematics/college/40yhzt0kkavlrtoc97h4ufwxadqqxgipbk.png)
As the condition is not satisfied.
Both are not inverse functions.