Answer: The required condensed expression is
![\log(xz^3)/(y^2).](https://img.qammunity.org/2020/formulas/mathematics/college/fn52p8l7v1bwiooc8gdd33lhvlsgwkj5a1.png)
Step-by-step explanation: We are given to fully condense the following logarithmic expression assuming that all variables represent positive numbers :
![E=\log x-2\log y+3\log z~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)](https://img.qammunity.org/2020/formulas/mathematics/college/5jddoz5arupb9y9uigfbggc0oddjvzwzs9.png)
We will be using the following properties of logarithms :
![(i)~\log a^b=b\log a,\\\\(ii)~\log a+\log b=\log(ab),\\\\(iii)~\log a-\log b=\log(a)/(b).](https://img.qammunity.org/2020/formulas/mathematics/college/cie3u7pxauihs3ixx3rvsgpo0yxknkba6v.png)
Therefore, from expression (i), we get
![E\\\\=\log x-2\log y+3\log z\\\\=\log x-\log y^2+\log z^3\\\\=\log(xz^3)-\log y^2\\\\=\log(xz^3)/(y^2).](https://img.qammunity.org/2020/formulas/mathematics/college/kqte5rzykvuzwbitjpcgw2ggl9oy12msx3.png)
Thus, the required condensed expression is
![\log(xz^3)/(y^2).](https://img.qammunity.org/2020/formulas/mathematics/college/fn52p8l7v1bwiooc8gdd33lhvlsgwkj5a1.png)