26.8k views
2 votes
Compute single integral of y^2 dx +x dy where C is the circle x^2+y^2=16 oriented positively

1 Answer

6 votes

Parameterize
C by


\vec r(t)=\langle x(t),y(t)\rangle=\langle4\cos t,4\sin t\rangle

with
0\le t\le2\pi. Then


\displaystyle\int_Cy^2\,\mathrm dx+x\,\mathrm dy=\int_0^(2\pi)\langle y(t)^2,x(t)\rangle\cdot\left\langle(\mathrm dx(t))/(\mathrm dt),(\mathrm dy(t))/(\mathrm dt)\right\rangle\,\mathrm dt


=\displaystyle\int_0^(2\pi)\langle16\sin^2t,4\cos t\rangle\cdot\langle-4\sin t,4\cos t\rangle\,\mathrm dt


=\displaystyle16\int_0^(2\pi)(\cos^2t-4\sin^3t)\,\mathrm dt=\boxed{16\pi}

User Gulshan Nadaph
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.