Answer:
a) Qh= 6750 kJ
b) e = 0.296
c)
= 390.625° C
Step-by-step explanation:
Given:
Work done, W = 2000 kJ
Heat flow, Q = 4750 kJ
Temperature at which heat flows out,
= 275° C
a) Now, the heat flow through the engine (Qh)
Qh = W + Q
or
Qh = 2000 + 4750
or
Qh= 6750 kJ
b) The efficiency (e) is given as:
![e=(W)/(Q_h)](https://img.qammunity.org/2020/formulas/physics/college/symeq84ng5sq4ippr45yrzs0sxbc8bgc39.png)
on substituting the values, we get
![e=(2000)/(6750)](https://img.qammunity.org/2020/formulas/physics/college/3q2asey3ao69t2ep8a1nvkwo8qe46pzqvz.png)
or
e = 0.296
c)
![e=1-(T_c)/(T_H)](https://img.qammunity.org/2020/formulas/physics/college/dsi8pu5koksttf1h0rayuhgtc4muwsn5hs.png)
where,
is the temperature at which heat flow
on substituting the values, we get
![0.296=1-(275)/(T_H)](https://img.qammunity.org/2020/formulas/physics/college/m3kos3xbxfn5exjvxwexiprzpdq83yyl4l.png)
or
= 390.625° C