181k views
1 vote
Find the inverse Laplace transform, f(t), of the function:

F(s) = 7/s^2 + 5s + 24

User Andres
by
5.3k points

1 Answer

2 votes

Answer:


y(t)=(14)/(√(71))e^{-(5)/(2)t}sin(√(71))/(2)t

Explanation:

We are given that a function

F(s)=
(7)/(s^2+5s+24)

We have to find the inverse transform of the function

F(s)=
(7)/(s^2+2\cdot (5)/(2)s+(25)/(4)-(25)/(4)+24)

F(s)=
(7)/((s+(5)/(2))^2+((√(71))/(2))^2)

We know that laplace transform of sinhat

L(sinat)=
(a)/(s^2+a^2)

L
(e^(at)sinbt)=(b)/((s-a)^2+b^2)

Using this formula we get


y(t)=(7)/((√(71))/(2))* e^{-(5)/(2)t}sin(√(71))/(2)t


y(t)=(14)/(√(71))e^{-(5)/(2)t}sin(√(71))/(2)t

User Chime
by
5.5k points