43.9k views
5 votes
F(x) = x^3 + 6x^2 + x1/2 and g(x)= x^1/2. Find f(x) ÷ g(x)

A) x^5/2 + 6x^3/2-1
B) (x^5+6x^3 +1)1/2
C) x5/2 +6x^3/2 + 1
D) x^3/2 + 6x+ x1/4
E) x3/2 - 6x + x1/4

User Bahu
by
8.1k points

1 Answer

3 votes

Answer:


(f(x))/(g(x))=x^{(5)/(2)} +6 x^{(3)/(2)} +1}

Explanation:


f(x)=x^3+6x^2+√(x)


g(x)= √(x)

we are asked to determine


(f(x))/(g(x))

Let us do it step by step.


f(x)=x^3+6x^2+√(x)


f(x)=x^2 * x+6x * x +√(x)


f(x)=x^2 * √(x) * √(x) +6x * √(x) * √(x) +√(x)

Taking
√(x) as GCF


f(x)= √(x)(x^2 * √(x) +6x * √(x) +1)

Hence


(f(x))/(g(x))=(√(x)(x^2 * √(x) +6x * √(x) +1))/( √(x))


(f(x))/(g(x))=x^2 * √(x) +6x * √(x) +1


√(x)=x^(1)/(2)


(f(x))/(g(x))=x^2 * x^{(1)/(2)} +6 * x * x^{(1)/(2)} +1

Using law of exponents


a^m * a^n = a^(m+n)


(f(x))/(g(x))=x^{2+(1)/(2)} +6 * x^{1+(1)/(2)} +1}


(f(x))/(g(x))=x^{(5)/(2)} +6 x^{(3)/(2)} +1}

User Jpo
by
8.2k points