Step-by-step explanation:
The given data is as follows.
Mass flow rate of Air =
= 1 kg/s
Density of Air (r) =
![0.001156 g/cm^(3) * (1000kg/m^(3)) / (g/cm^(3))](https://img.qammunity.org/2020/formulas/chemistry/college/tnzulxj3tm02wczotufhdw2w4i79w6cff0.png)
= 1.156
![kg/m^(3)](https://img.qammunity.org/2020/formulas/physics/high-school/lirf47ojrjk11hgq6hwp0oq73cln4ag79q.png)
Viscosity of Air (m) =
![0.0182 cP * 10^(-3) kg/ms/ cP](https://img.qammunity.org/2020/formulas/chemistry/college/4q71u2tsenrszenq4twkldcaxeim6ge1vi.png)
=
![0.0182 * 10^(-3) kg/(ms)](https://img.qammunity.org/2020/formulas/chemistry/college/8g6xs84qtskwlgddbwr9ef6gdh7b4y3orj.png)
Bed porosity (e) = 0.38
Diameter of bed (D)=
= 1.25 m
Length of bed (L) =
= 2.5 m
Diameter of particles (Dp) =
= 0.0125 m
Sphericity = 1
Volumetric flow rate =
![\frac{\text{mass flow rate}}{density}](https://img.qammunity.org/2020/formulas/chemistry/college/e2ssp3t1fdw891iu7144lppcdjx9ciy055.png)
=
![(1 kg/s)/(1.156 kg/m^(3))](https://img.qammunity.org/2020/formulas/chemistry/college/yr8fmxo6yjrb3cs3lzg1ifjr2vg9iw15o1.png)
= 0.865
![m^(3)/s](https://img.qammunity.org/2020/formulas/engineering/college/asohzgtuapg61ap2xodf1624p24wnwuri7.png)
Superficial velocity,
=
![(0.865)/((3.14)/(4)) * D^(2)](https://img.qammunity.org/2020/formulas/chemistry/college/8xu8sgfrnvth48x45rcksj1d6nplb8upbr.png)
=
![(0.865)/((3.14)/(4)) times 1.25 m * 1.25 m](https://img.qammunity.org/2020/formulas/chemistry/college/ofi4anr69mijr4t9w9m2qhu9sde8jfv5xl.png)
= 0.705 m/s
=
![(D_(p)V_(o)r)/(m (1 - e))](https://img.qammunity.org/2020/formulas/chemistry/college/y79x1sofivqxgpne0htzqzo7przpojfk42.png)
NRePM = \frac{0.0125 m \times 0.705 m/s \times 1.156 kg/m^{3}}{0.0182 times 10^{-3} kg/(ms) \times (1 - 0.38)[/tex]
= 903
As we known that 10 >
> 1000
Below 10 means laminar flow.
Higher than 1000 is turbulent flow.
As, Reynolds number is between 10 and 100, therefore it is in transition flow.
According to Ergun equation,
![(\Delta p \Phi_(s) D_(p) \varepsilon^(3))/(L_(p) V^(2)_(o) (1 - \varepsilon)) = (150(1 - \varepsilon))/(\Phi_(S) D_(P) V_(o) (\rho)/(\mu)) + 1.75](https://img.qammunity.org/2020/formulas/chemistry/college/x7ytif2zlk2dxlf5toz4ysu5439w7nme43.png)
![\Delta p * 1 * 0.0125 m * 0.383 / [2.5 m * 1.156 kg/m^(3) * 0.7052 m^(2)/s^(2) * (1 - 0.38)]](https://img.qammunity.org/2020/formulas/chemistry/college/19kmjoctpru1tuf9vqv352njthatm7euob.png)
=
![150 * (1 - 0.38) / [1 * 0.0125 m * 0.7052 m^(2)/s^(2) * 1.156 kg/m^(3) / 0.0182 * 10^(-3) kg/(ms)] + 1.75](https://img.qammunity.org/2020/formulas/chemistry/college/xl8o1a6rpmnm2brv16yzghi7pmlj36juug.png)
=
= 1.92
=
![(1.92)/(7.702 * 10^(-4))](https://img.qammunity.org/2020/formulas/chemistry/college/izntw7w90s62yrfvvh10feuk1lzo9roi86.png)
![\Delta p = 2492.90 N/m^(2)](https://img.qammunity.org/2020/formulas/chemistry/college/nv9xy7d3s4cx9ae7fe196iq5ednxl11wiy.png)
Thus, we can conclude that the pressure drop of air under given conditions is
.