134k views
3 votes
Just rationalize and simplify

Just rationalize and simplify-example-1

2 Answers

7 votes

Answer:

(a+5)-4√(a+1) /(a-3)

Explanation:

√(a+1) - 2 / √(a+1) + 2

={√(a+1) - 2 }{√{(a+1) - 2 } / {√(a+1) + 2} {√(a+1) - 2 }

={√(a+1) - 2 }² / {√(a+1)}² - 2²

=[ {√(a+1)}² -4√(a+1) +4 ] / a+1-4

=[a+1-4√(a+1)+4] / (a-3)

=(a+5)-4√(a+1) /(a-3)

User DrowsySaturn
by
8.2k points
3 votes


\mathsf{Given :\;\;(√(a + 1) - 2)/(√(a + 1) + 2)}


\mathsf{Multiplying\;Numerator\;and\;Denominator\;with\;√(a + 1) - 2,\;We\;get :}


\mathsf{\implies ((√(a + 1) - 2)(√(a + 1) - 2))/((√(a + 1) + 2)(√(a + 1) - 2))}}


\mathsf{\implies ((√(a + 1) - 2)^2)/((√(a + 1))^2 - (2)^2)}}


\mathsf{\implies ((√(a + 1))^2 + (2)^2 - 2(√(a + 1))(2))/(a + 1 - 4)}}


\mathsf{\implies (a + 1 + 4 - 4√(a + 1))/(a + 1 - 4)}}


\mathsf{\implies (a + 5 - 4√(a + 1))/(a - 3)}}

User Caramba
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories