122k views
3 votes
Find a basis for the vector space of all symmetric 3 x 3 matrices.

User Bcleary
by
5.9k points

1 Answer

3 votes

Answer:


\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&0\end{array}\right],\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&0\end{array}\right],\left[\begin{array}{ccc}0&1&0\\1&0&1\\0&1&0\end{array}\right]

Explanation:

We are given that vector space of all symmetric matrix

M(R)={
\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right]

where a,b,c,d,e,f,g,h,i
\in R}

Let A=
\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right]

A'=
\left[\begin{array}{ccc}a&d&g\\b&e&h\\c&f&i\end{array}\right]

A is symmetric

Then A'=A


\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right]=
\left[\begin{array}{ccc}a&d&g\\b&e&h\\c&f&i\end{array}\right]

a=a , e=e, i=i

a-a=0 , e-e=0, i-i=0

b=d, c=g ,f=h

Hence, the matrix


\left[\begin{array}{ccc}0&b&c\\b&0&f\\c&f&0\end{array}\right]

Therefore, the basis are


\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&0\end{array}\right],\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&0\end{array}\right],\left[\begin{array}{ccc}0&1&0\\1&0&1\\0&1&0\end{array}\right]

There are three elements to generate an element of vectors of all symmetric matrix
3* 3 matrix


\left[\begin{array}{ccc}0&b&c\\b&0&f\\c&f&0\end{array}\right]=
b\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&0\end{array}\right]+c\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&0\end{array}\right]+f\left[\begin{array}{ccc}0&1&0\\1&0&1\\0&1&0\end{array}\right]

User ShaneC
by
6.5k points