Explanation :
It is given that,
Diameter of the coil, d = 20 cm = 0.2 m
Radius of the coil, r = 0.1 m
Number of turns, N = 3000
Induced EMF,
![\epsilon=1.5\ V](https://img.qammunity.org/2020/formulas/physics/college/5ff0jzbteuhz81x35euj0r35ycyibnikc1.png)
Magnitude of Earth's field,
![B=10^(-4)\ T](https://img.qammunity.org/2020/formulas/physics/college/6hm0ta9og3s0emz047zlrrw05adh4uminw.png)
We need to find the angular frequency with which it is rotated. The induced emf due to rotation is given by :
![\epsilon=NBA\omega](https://img.qammunity.org/2020/formulas/physics/college/dmzkkixylt41o40ql771uwkjx2y8ptv026.png)
![\omega=(\epsilon)/(NBA)](https://img.qammunity.org/2020/formulas/physics/college/vssywkbasc6sms076aq6iqrbyyhgeb9ot5.png)
![\omega=(1.5)/(3000* 10^(-4)* \pi (0.1)^2)](https://img.qammunity.org/2020/formulas/physics/college/p4s83qjl9d3ga6cdt98qk77ievnix2wb6a.png)
![\omega=159.15\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/3krii068k975he3qkkb8ehfflwe2rix8x2.png)
So, the angular frequency with which the loop is rotated is 159.15 rad/s. Hence, this is the required solution.