Answer:
The intrinsic carrier density of diamond is
.
Step-by-step explanation:
Given that,
Energy band gape = 5.4 eV
Temperature = 300 K
We need to calculate the intrinsic carrier density of diamond
Using formula of density
....(I)
We need to calculate
![N_(c)](https://img.qammunity.org/2020/formulas/physics/college/5rbmda7dt11a7632ggkf3kh99k91q34nte.png)
![N_(c)=2((2\pi m_(n)kT)/(h^2))^{(3)/(2)}](https://img.qammunity.org/2020/formulas/physics/college/i5obhxsctx7sz1vyt21501kbx8s586fi26.png)
Put the value into the formula
![N_(c)=2((2\pi*9.1*10^(-28)*300*1.3807*10^(-16))/((6.63*10^(-27))))^{(3)/(2)}](https://img.qammunity.org/2020/formulas/physics/college/jzv6yj3ybt9zwkokwics0b3rdvd5s1wb83.png)
![N_(c)=2.501*10^(19)\ cm^(-3)](https://img.qammunity.org/2020/formulas/physics/college/nr3f1jrkxe5am3l1j4n8743uupuihrouip.png)
We need to calculate
![N_(v)](https://img.qammunity.org/2020/formulas/physics/college/jwxxycxjatn0vesxrrrqrmmtodt7x1adg9.png)
![N_(v)=2((2\pi m_(n)kT)/(h^2))^{(3)/(2)}](https://img.qammunity.org/2020/formulas/physics/college/3dsexhdm7edtfh83c0sog9ikbvvq7eiqsa.png)
![N_(v)=2((2\pi*9.1*10^(-28)*300*1.3807*10^(-16))/((6.63*10^(-27))))^{(3)/(2)}](https://img.qammunity.org/2020/formulas/physics/college/hxa7dt8aowzd9cjcwexkqu3q7mlr22d5r5.png)
![N_(v)=2.501*10^(19)\ cm^(-3)](https://img.qammunity.org/2020/formulas/physics/college/8eh7ad8q9is2uq68c9vmi7jp9u2x6en2oq.png)
So.
![N_(c)=N_(v)](https://img.qammunity.org/2020/formulas/physics/college/2aembu04frx82fsii2pahj295dgqktcmjd.png)
Now, Put the value of
and
in equation (I)
![n_(i)^2=(2.501*10^(19))^2 e^{(-5.4)/(0.0259)}](https://img.qammunity.org/2020/formulas/physics/college/rxvrqufdftexvdbdzur7cgt181d0ug9zya.png)
![n_(i)^2=1.7715080315*10^(-52)](https://img.qammunity.org/2020/formulas/physics/college/58znnrzkk0pwlccn0ymr4s5r3llpbja9uy.png)
![n_(i)=1.330*10^(-26)](https://img.qammunity.org/2020/formulas/physics/college/6uvkflnf7vgglxkbfch2aj7ld8p5fxevyq.png)
Hence, The intrinsic carrier density of diamond is
.