141k views
2 votes
The matrix has eigenvalues 0, 2, and 4.

(2 0 2

0 2 0

2 0 2)

Determine corresponding eigenvectors.

User Boossss
by
7.4k points

1 Answer

4 votes

Answer:

The eigenvectors of the matrix are
\begin{bmatrix}-1\\ 0\\ 1\end{bmatrix},
\begin{bmatrix}0\\ 1\\ 0\end{bmatrix} and
\begin{bmatrix}1\\ 0\\ 1\end{bmatrix}.

Explanation:

The given matrix is


\begin{bmatrix}2&0&2\\ \:0&2&0\\ \:2&0&2\end{bmatrix}

It is given that the matrix has eigenvalues 0, 2, and 4.

For
\lambda=0


\left(A-\lambda I\right)=\begin{bmatrix}2&0&2\\ 0&2&0\\ 2&0&2\end{bmatrix}-0\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}=\begin{bmatrix}2&0&2\\ 0&2&0\\ 2&0&2\end{bmatrix}


\begin{bmatrix}2&0&2\\ 0&2&0\\ 2&0&2\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\\ \text{z}\end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0\end{bmatrix}

Using Row operations we get


\begin{bmatrix}1&0&1\\ 0&1&0\\ 0&0&0\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0\end{bmatrix}


x+z=0\\ y=0


y=0\\ x=-z


\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}-z\\ 0\\ z\end{bmatrix}\space\space\:z\\eq 0

Let z=1,


\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}-1\\ 0\\ 1\end{bmatrix}

At
\lambda=0 eigen vector is
\begin{bmatrix}-1\\ 0\\ 1\end{bmatrix}.

Similarly,

For
\lambda=2


\left(A-\lambda I\right)=\begin{bmatrix}2&0&2\\ 0&2&0\\ 2&0&2\end{bmatrix}-2\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}=\begin{bmatrix}0&0&2\\ 0&0&0\\ 2&0&0\end{bmatrix}


\begin{bmatrix}0&0&2\\ 0&0&0\\ 2&0&0\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\\ \text{z}\end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0\end{bmatrix}

Using row operations.


\begin{bmatrix}1&0&0\\ 0&0&1\\ 0&0&0\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0\end{bmatrix}


x=0\\ z=0

At
\lambda=2 eigen vector is
\begin{bmatrix}0\\ 1\\ 0\end{bmatrix}.

For
\lambda=4


\left(A-\lambda \right)=\begin{bmatrix}2&0&2\\ 0&2&0\\ 2&0&2\end{bmatrix}-4\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}=\begin{bmatrix}-2&0&2\\ 0&-2&0\\ 2&0&-2\end{bmatrix}


\begin{bmatrix}-2&0&2\\ 0&-2&0\\ 2&0&-2\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\\ \text{z}\end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0\end{bmatrix}

Using row operations.


\begin{bmatrix}1&0&-1\\ 0&1&0\\ 0&0&0\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0\end{bmatrix}


x-z=0\\ y=0


y=0\\ x=z


\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}z\\ 0\\ z\end{bmatrix}\space\space\:z\\eq 0

at z=1


\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}1\\ 0\\ 1\end{bmatrix}

At
\lambda=4 eigen vector is
\begin{bmatrix}1\\ 0\\ 1\end{bmatrix}.

Therefore the eigenvectors of the matrix are
\begin{bmatrix}-1\\ 0\\ 1\end{bmatrix},
\begin{bmatrix}0\\ 1\\ 0\end{bmatrix} and
\begin{bmatrix}1\\ 0\\ 1\end{bmatrix}.

User Bladefist
by
9.0k points

No related questions found