Answer with explanation:
Given : Significance level :
![\alpha=0.01](https://img.qammunity.org/2020/formulas/business/high-school/6565p2iepy5xt70zclj08f8hu5r9df3d20.png)
Sample size :
![n=18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z5a62iqgpfnwqtle551kkyyvi4kj4z2r9i.png)
Degree of freedom :
![n-1 = 18-1=17](https://img.qammunity.org/2020/formulas/mathematics/college/wgjpx7lpajhohhkekta6zkrjzn22c9j7ir.png)
If we perform a Right- tailed test with degree of freedom 17 and significance level 0.01, then by using the chi-square distribution table , the critical value will be 33.409.
If the calculated test statistic value is greater than the critical value 33.409 then we reject the null hypothesis.