51.7k views
1 vote
Find:

a. C(n,n-2)____________________________

b. P(n,n-2)____________________________

1 Answer

2 votes

Answer:
^nC_r=(n(n-1))/(2)


^nP_(n-2)=n(n-1)

Explanation:

Since we have given that

C(n,n-2)

As we know that


^nC_r=(n!)/((n-r)!r!))\\\\so,\\\\^nC_(n-2)=(n!)/((n-)n-2)!2!)\\\\^nC_(n-2)=(n!)/(2!(n-2)!)\\\\^nC_(n-2)=(n(n-1)(n-2)!)/(2!(n-2)!)\\\\^nC_(n-2)=(n(n-1))/(2)

Similarly,


^nP_(n-2)=(n!)/((n-2)!)\\\\^nP_(n-2)=(n(n-1)(n-2)!)/((n-2)!)\\\\^nP_(n-2)=n(n-1)

Hence,
^nC_r=(n(n-1))/(2)


^nP_(n-2)=n(n-1)

User GordonShumway
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories