Answer:
Option 3 -
![y=-6x+28](https://img.qammunity.org/2020/formulas/mathematics/college/nk4t0ju0qz4wfapb2s3tlkitwthurfnc5m.png)
Explanation:
Given : Perpendicular to the line
; containing the point (4,4).
To Find : An equation for the line with the given properties ?
Solution :
We know that,
When two lines are perpendicular then slope of one equation is negative reciprocal of another equation.
Slope of the equation
![x - 6y = 8](https://img.qammunity.org/2020/formulas/mathematics/college/cptqx4fdb4ue9r20khle8jpgprk7n51k8b.png)
Converting into slope form
,
Where m is the slope.
![y=(x-8)/(6)](https://img.qammunity.org/2020/formulas/mathematics/college/a129qo6zct590iiiramt6qf7ih131esvos.png)
![y=(x)/(6)-(8)/(6)](https://img.qammunity.org/2020/formulas/mathematics/college/yybvreabf70ual9v6yfml0khgt5dcd6blg.png)
The slope of the equation is
![m=(1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/college/wnp9klrvdk9qbjd89hfngaozydeze7g6en.png)
The slope of the perpendicular equation is
![m_1=-(1)/(m)](https://img.qammunity.org/2020/formulas/mathematics/college/vi5khcwlm5mer8rd4ir7louf0rdhfeot7z.png)
The required slope is
![m_1=-(1)/((1)/(6))](https://img.qammunity.org/2020/formulas/mathematics/college/n9n8qqb6y8yn7qnsugtjokqzb6hpqlg9qs.png)
![m_1=-6](https://img.qammunity.org/2020/formulas/mathematics/college/ylcmkglcu7te84xnrnyn36wkuforghrkx5.png)
The required equation is
![y=-6x+c](https://img.qammunity.org/2020/formulas/mathematics/college/ru3z1vgi2lqv4efosfx53wx4ogxvxznylv.png)
Substitute point (x,y)=(4,4)
![4=-6(4)+c](https://img.qammunity.org/2020/formulas/mathematics/college/yy5g3e0y9c8glrtkhy2vd6x0k8bo2r22xs.png)
![4=-24+c](https://img.qammunity.org/2020/formulas/mathematics/college/2f7i2hmhyqqkala2hvy3s624rclovl10er.png)
![c=28](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3sygfuapdsa3fj0rgtk9nsxbshxqm1hf0l.png)
Substitute back in equation,
![y=-6x+28](https://img.qammunity.org/2020/formulas/mathematics/college/nk4t0ju0qz4wfapb2s3tlkitwthurfnc5m.png)
Therefore, The required equation for the line is
![y=-6x+28](https://img.qammunity.org/2020/formulas/mathematics/college/nk4t0ju0qz4wfapb2s3tlkitwthurfnc5m.png)
So, Option 3 is correct.