213k views
5 votes
Triangle ABC has vertices at A(-2,1), B(-2,-3), and C(1,-2). What is the area of the triangle? a 18 square units b 9 square units c 6 square units d 12 square units

1 Answer

3 votes

Answer:

Option C. 6 square units

Explanation:

we know that

Heron's Formula is a method for calculating the area of a triangle when you know the lengths of all three sides.

Let

a,b,c be the lengths of the sides of a triangle.

The area is given by:


A=√(p(p-a)(p-b)(p-c))

where

p is half the perimeter

p=
(a+b+c)/(2)

we have

Triangle ABC has vertices at A(-2,1), B(-2,-3), and C(1,-2)

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

step 1

Find the distance AB


d=\sqrt{(-3-1)^(2)+(-2+2)^(2)}


d=\sqrt{(-4)^(2)+(0)^(2)}


dAB=4\ units

step 2

Find the distance BC


d=\sqrt{(-2+3)^(2)+(1+2)^(2)}


d=\sqrt{(1)^(2)+(3)^(2)}


dBC=√(10)\ units

step 3

Find the distance AC


d=\sqrt{(-2-1)^(2)+(1+2)^(2)}


d=\sqrt{(-3)^(2)+(3)^(2)}


dBC=√(18)\ units

step 4


a=AB=4\ units


b=BC=√(10)\ units


c=AC=√(18)\ units

Find the half perimeter p

p=
(4+√(10)+√(18))/(2)=5.70\ units

Find the area


A=√(5.7(5.7-4)(5.7-3.16)(5.7-4.24))


A=√(5.7(1.7)(2.54)(1.46))


A=√(35.93)


A=6\ units^(2)

User Sridvijay
by
7.1k points