Answer : The correct option is, (C) 1.1
Solution : Given,
Initial moles of
= 1.0 mole
Initial volume of solution = 1.0 L
First we have to calculate the concentration
.
![\text{Concentration of }N_2O_4=\frac{\text{Moles of }N_2O_4}{\text{Volume of solution}}](https://img.qammunity.org/2020/formulas/chemistry/high-school/oi60r9pt2h97zzu4qbzal9r3ebkhqqgg7t.png)
![\text{Concentration of }N_2O_4=(1.0moles)/(1.0L)=1.0M](https://img.qammunity.org/2020/formulas/chemistry/high-school/5edltsrvrwvvl6g8trs9pmu6s55op8km1e.png)
The given equilibrium reaction is,
![N_2O_4(g)\rightleftharpoons 2NO_2(g)](https://img.qammunity.org/2020/formulas/physics/college/q8dzs74codpyib78w3qgwyklqwgemfuw79.png)
Initially c 0
At equilibrium
![2c\alpha](https://img.qammunity.org/2020/formulas/chemistry/high-school/dgc7m6wqtety0q5sfwe79h3mfhn4puyxy8.png)
The expression of
will be,
![K_c=([NO_2]^2)/([N_2O_4])](https://img.qammunity.org/2020/formulas/physics/college/qjqdoekzbudhpleet02icllsrildnndyp1.png)
![K_c=((2c\alpha)^2)/((c-c\alpha))](https://img.qammunity.org/2020/formulas/chemistry/high-school/c2gw5y8t1w69teqko8kwx8o9nr6qwkq2a6.png)
where,
= degree of dissociation = 40 % = 0.4
Now put all the given values in the above expression, we get:
![K_c=((2c\alpha)^2)/((c-c\alpha))](https://img.qammunity.org/2020/formulas/chemistry/high-school/c2gw5y8t1w69teqko8kwx8o9nr6qwkq2a6.png)
![K_c=((2* 1* 0.4)^2)/((1-1* 0.4))](https://img.qammunity.org/2020/formulas/chemistry/high-school/o3ip8a986af24ps7e4on1xtmmrpf1qof14.png)
![K_c=1.066\aprrox 1.1](https://img.qammunity.org/2020/formulas/chemistry/high-school/ariwhfiuh8w7sdsncacrz2ilk04di917s6.png)
Therefore, the value of equilibrium constant for this reaction is, 1.1