Answer : The correct option is, (C) 0.090
Solution : Given,
Initial moles of
= 0.350 mole
volume of solution = 5.00 L
First we have to calculate the concentration
.
![\text{Concentration of }O_2=\frac{\text{Moles of }O_2}{\text{Volume of solution}}](https://img.qammunity.org/2020/formulas/chemistry/high-school/wb1ez9thcgxxftak2i69qkfhggnarvpila.png)
![\text{Concentration of }O_2=(0.350moles)/(5.00L)=0.07M](https://img.qammunity.org/2020/formulas/chemistry/high-school/hi6kkwli4dnmmmbgsqzfsezc88c7m72ay5.png)
The given equilibrium reaction is,
![C(s)+O_2(g)\rightleftharpoons 2CO(g)](https://img.qammunity.org/2020/formulas/chemistry/high-school/bvntpt4hm0r15o1i1gos1yxc8ij3vc123p.png)
Initially 0.07 0
At equilibrium (0.07-x) 2x
The expression of
will be,
![K_c=([CO]^2)/([O_2])](https://img.qammunity.org/2020/formulas/chemistry/high-school/4lrxgzxq22suxet8tfk9tnsf0k2a2td1gu.png)
As we are given the concentration of
at equilibrium is, 0.060 M
That means,
2x = 0.060 M
x = 0.030 M
The concentration of
at equilibrium = 0.07 - x = 0.07 - 0.03 = 0.04 M
Now put all the given values in the above expression, we get:
![K_c=([CO]^2)/([O_2])](https://img.qammunity.org/2020/formulas/chemistry/high-school/4lrxgzxq22suxet8tfk9tnsf0k2a2td1gu.png)
![K_c=((0.060)^2)/((0.04))](https://img.qammunity.org/2020/formulas/chemistry/high-school/x3ee8ff3rq4261iv3h881786e3j9yzpula.png)
![K_c=0.090](https://img.qammunity.org/2020/formulas/chemistry/high-school/qlk5hc62q7baky0999k7vjehhe7enkcnw0.png)
Therefore, the value of equilibrium constant for this reaction is, 0.090