Answer:
The parametric equations for the given line are x=1-t, y=1+t and z=2t.
Explanation:
Given information: P (1,1,0) and Q (0,2,2).
The parametric equation of line are
![x=x_0+at](https://img.qammunity.org/2020/formulas/mathematics/college/yt8ejwk6yd0mmbg3tiqp5jilnnqsjtohum.png)
![y=y_0+bt](https://img.qammunity.org/2020/formulas/mathematics/college/5mgfscgjr5ddxee9bynk6w93aa2kg54pod.png)
![z=z_0+ct](https://img.qammunity.org/2020/formulas/mathematics/college/1v1u6z8i7wwc2pwq7718zsxzio7ew4npb2.png)
where,
is point on line and <a,b,c> is direction vector.
The line passes through the points P (1,1,0) and Q (0,2,2). So, the direction vector is
![\overrightarrow{v}=<x_2-x_1, y_2-y_1, z_2-z_1>](https://img.qammunity.org/2020/formulas/mathematics/college/9z24d3phn6278i94iipur0iimt8970xb2z.png)
![\overrightarrow{v}=<0-1,2-1, 2-0>](https://img.qammunity.org/2020/formulas/mathematics/college/h4mrjf7naz7aomtyx9djy9ta2hnmjwo7wn.png)
![\overrightarrow{v}=<-1,1,2>](https://img.qammunity.org/2020/formulas/mathematics/college/m1ukx5xl2rd3enf9ku1e40vdpcig4j0uy1.png)
The direction vector is <-1,1,2>. So, a=-1, b=1 and c=2. The parametric equation of line are
![x=1+(-1)t=1-t](https://img.qammunity.org/2020/formulas/mathematics/college/hb7exjdeg005nofof3ls1w61l4ym3rn7lv.png)
![y=1+(1)t=1+t](https://img.qammunity.org/2020/formulas/mathematics/college/fagsreu85dqagx0xn2vgswd5khf05anxco.png)
![z=0+(2)t=2t](https://img.qammunity.org/2020/formulas/mathematics/college/onqr0zez0ojnwcu3yud6911n37cahyvfwu.png)
Therefore the parametric equations for the given line are x=1-t, y=1+t and z=2t.