Answer:
Length of enclosure =18.89 foot
Width of enclosure=11.12 foot
Explanation:
We are given that a fence is to be built to enclose a rectangular area 210 square feet.
Fence along three sides is to be made of material that costs 5 dollars per foot
and the material for the fourth side costs 12 dollars per foot.
We have to find the dimension of the enclosure that is most economical
Let x be the length and y be the width of enclosure
We know that area of rectangle=
![x*y](https://img.qammunity.org/2020/formulas/mathematics/high-school/8tooswmw8bghbjlp2nl52impxh1k1nuspf.png)
![xy=210](https://img.qammunity.org/2020/formulas/mathematics/high-school/sz11x8izn6t8lzqpvo72ritp552c2kckep.png)
![y=(210)/(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tb5eygx3q4cjghco3h6f3no7pazvjtlhnn.png)
Cost of four sides =
![2(5x)+5(y)+12(y)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l8g3log1akllcn150jbhxu3hvz40gc45dk.png)
Total cost=
![10x+17y](https://img.qammunity.org/2020/formulas/mathematics/high-school/wcdb6l3yy83ohf630hi7uq8xemwt564jas.png)
C=
![10x+17\cdot(210)/(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/baobday3p9cbjhlyh0mojec8quvl2gi2xv.png)
C=
![10x+(3570)/(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/si6whi89nysgzb93prjsbwouth5uks3ax0.png)
Differentiate w.r.t x
![(dC)/(dt)=10-(3570)/(x^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/drxfi4pwwu82lj8b4994bpobxfetzoaj0m.png)
Substitute
![(dC)/(dx)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/7bdo5yiqyqskyg6iju5pdto52zd8u64vr9.png)
![10-(3570)/(x^2)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/i9qcwf11dzk4v65qjn9593h88wdpamjtij.png)
![(3570)/(x^2)=10](https://img.qammunity.org/2020/formulas/mathematics/high-school/pkzc5kcme3idiyrrpm2krhytdnho2atreg.png)
![x^2=357](https://img.qammunity.org/2020/formulas/mathematics/high-school/b94049nxh4na1pl497wxfx58em9gsmi75w.png)
![x=√(357)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qxeh86cx21anxlnmzqu6ojwllno7x99itj.png)
x=18.89
Differentiate w.r.t x
![(d^2C)/(dx^2)=(7140)/(x^3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d3qzr9o4l61jmv44setkzl6vl2uf6b96ll.png)
Substitute x=18.89
Then we get
![(d^2C)/(dx^2)=(7140)/((18.89)^3) >0](https://img.qammunity.org/2020/formulas/mathematics/high-school/oikz4zp9eo01acai7zt9gmm7qwytstzn0o.png)
Hence, the cost is minimum.
Length of enclosure =18.89 foot
Width of enclosure=
![(210)/(18.89)=11.12 foot](https://img.qammunity.org/2020/formulas/mathematics/high-school/qybsdfz39fowpa2gotj2m3b7gpcsvpg7fl.png)
Hence, the dimension of the enclosure that is most economical to construct
Length=18.89 foot and width=11.12 foot