3.2k views
5 votes
Use the Laplace transformation to solve the given IVP.

y'-y=2sin3t, y(0)=0

User Huske
by
7.7k points

1 Answer

4 votes

Answer:


y(t)=(3)/(5)e^t-(3)/(5)cost 3t-(1)/(5) sin3t

Explanation:

We are given that

y'-y=2 sin3t,y(0)=0

We have to solve given differential equation using Laplace transform

We know that L(y'-y)=L(2sin3t)


sY(s)-y(0)-Y(s)= (6)/(s^2+9)


L(sinat)=(a)/(s^2+a^2)


Y(s)(s-1)=(6)/(s^2+9)


Y(s)=(6)/((s^2+9)(s-1))

Using partial fraction


(6)/((s^2+9)(s-1))=(A)/(s-1)+(Bs+c)/(s^2+9)


6=A(s^2+9)+(s-1)(Bs+C)

s-1=0 then s=1

substitute s= 1 in equation

6=A(1+9)


A=(6)/(10)=(3)/(5)

Comparing coefficient of
s^2 and s on both sides then we get


A+B=0


B=-A=-(3)/(5)


-B+C=0


B=C=-(3)/(5)

Substitute the values

Then, Y(s)=
(3)/(5)(1)/(s-1)+((-3)/(5) s-(3)/(5))/(s^2+9)

Apply inverse transform then we get


y(t)=(3)/(5)e^t-(3)/(5)cost 3t-(1)/(5) sin3t


L(cos at}=(s)/(s^+a^2) and
L(e^(at))=(1)/(s-a)

User Desoga
by
7.9k points