Answer:
Max. normal stress,
![\sigma = \farc{3}{0.589} = 1.67F ksi](https://img.qammunity.org/2020/formulas/physics/college/s5z3r1q70oddrr49hgh5g323hsgzw2anur.png)
Given:
Outer diameter, d = 3 in
thickness, t =
![(3)/(4) in](https://img.qammunity.org/2020/formulas/physics/college/bbipmmb18ecwki8ruv6p86ingy6fj6zxu8.png)
Solution:
Now, we know that in case of axial force, the normal stress is maximum, therefore:
Max. normal stress,
(1)
The axial load is F kips (say)
Now, cross sectional area, A =
(2)
where
d = inner diameter
Now,
d = d' - 2t
d = 3 -
![2\fra{3}{4} = (3)/(2) in](https://img.qammunity.org/2020/formulas/physics/college/4hmseuqyly17pmt6e8hnzjvpcl9i6n6n1y.png)
Now, using the value of 'd' in eqn (2):
A =
![(\pi )/(4)(3^(2) - ((3)/(2))^(2)) = 0.589 in^(2)](https://img.qammunity.org/2020/formulas/physics/college/g4qeyj5oqe4vk4rkz75wid0ykq3jzj8mr0.png)
Now, using eqn (1):
Max. normal stress,
![\sigma = \farc{F}{0.589} = 1.67F](https://img.qammunity.org/2020/formulas/physics/college/saw8v9hkcmxds9fmrg2q2fhg6qav54ctgz.png)