Answer: t=5.59
Explanation:
We assume that the money in wallets of women and men are normally distributed.
Given : Sample size of females :
![n_x=16](https://img.qammunity.org/2020/formulas/mathematics/college/hc58b5cjtjiw4nkgz0zhc6mdfdtats11zz.png)
Sample mean :
![\overline{X}=22.30](https://img.qammunity.org/2020/formulas/mathematics/college/yyzv4rzwj28odgkij5bkhqmr844mf0eo9x.png)
Standard deviation :
![\sigma_x=3.20](https://img.qammunity.org/2020/formulas/mathematics/college/nbuyjv3henemnt7ydp2wtync87klzgejvm.png)
Sample size of males :
![n_y=16](https://img.qammunity.org/2020/formulas/mathematics/college/13l95bjpjbb2e5kwi1p8tlfhu6yhe7sw8q.png)
Sample mean :
![\overline{Y}=22.30](https://img.qammunity.org/2020/formulas/mathematics/college/t9m6q9a1h22prcbrfcev8udcmvi6gx3dit.png)
Standard deviation :
![\sigma_y=9.60](https://img.qammunity.org/2020/formulas/mathematics/college/fxc2tg9sbsl3yoruvoczxp9wermhfzbe95.png)
Since sample size is small (<30), so we use t-test.
The test static for difference of two population mean is given by :-
![t=\frac{\overline{X}-\overline{Y}}{\sqrt{(\sigma_x)/(n_x)+(\sigma_y)/(x_y)}}](https://img.qammunity.org/2020/formulas/mathematics/college/16zlkcvchy4wvpowuvu24x67s1aeh3nmp1.png)
![=\frac{22.30-17.30}{\sqrt{(3.20)/(16)+(9.60)/(16)}}\\\\=5.59016994375\approx5.59](https://img.qammunity.org/2020/formulas/mathematics/college/7kjupdkniakh4yzt7dhd9naxr4rf6tielo.png)
Hence, the test statistic for the researcher’s hypothesis is : t=5.59