Answer: The correct answer is Option D.
Step-by-step explanation:
We are given a nucleus having representation:
![_6^(12)\textrm{C}](https://img.qammunity.org/2020/formulas/physics/college/j4bdjnxm3v4ik5k3bjbnqyx8tbl5ztnc1z.png)
Number of protons = 6
Number of neutrons = 12 - 6 = 6
Number of electrons = 6
To calculate the mass defect of the nucleus, we use the equation:
![\Delta m=[(n_p* m_p)+(n_n* m_n)+(n_e* m_e)]-M](https://img.qammunity.org/2020/formulas/physics/college/1wwg0qa0nzxsnh4g8iicp4gyd8vncno25n.png)
where,
= number of protons = 6
= mass of one proton = 1.00728 u
= number of neutrons = 6
= mass of one neutron = 1.00866 u
= number of electrons = 6
= mass of one electron = 0.00054858 u
M = Mass number = 12
Putting values in above equation, we get:
![\Delta m=[(6* 1.00728)+(6* 1.00866)+(6* 0.00054858)]-12\\\\\Delta m=0.098931u](https://img.qammunity.org/2020/formulas/physics/college/zngqrjdrfubj99vga41ut8w7pcuziwotx4.png)
To calculate the binding energy of the nucleus, we use the equation:
![E=\Delta mc^2\\E=(0.098931u)* c^2](https://img.qammunity.org/2020/formulas/physics/college/jsd9552vf8k3xri2qdvqr5khgffe5ddeen.png)
(Conversion factor:
)
![E=92.2MeV](https://img.qammunity.org/2020/formulas/physics/college/8jfr36c7qa5hix27ywpzjpupap40wdgc3k.png)
Hence, the correct answer is Option D.