Answer:
![v'_(x) = 785.786 m/s](https://img.qammunity.org/2020/formulas/physics/college/ph96hbghmevb74oudzpmgaa8wu70p983xo.png)
(decreasing)
Given:
= 2300 m/s
= 100 m/s
= 2000 m/s
Angle made with the horizontal,
![\theta = 45^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jdeb7ek7qzy84oayjb77tr4z88w5rgobyu.png)
The horizontal component of velocity is on the X-axis whereas the vertical one is on the Y-axis
Now, by the law of conservation of momentum for horizontal axis:
![mu_(x) + m'u'_(x) = mv_(x) + m'v'_(x)](https://img.qammunity.org/2020/formulas/physics/college/rtjwxxwz78rnnw1p4k0go8o8xmr6tcu3kp.png)
![2300 + (- 100) = 2000cos45^(\circ) + v'_(x)](https://img.qammunity.org/2020/formulas/physics/college/uaddchgkc5vep2eb7asir3rr1hf2jtlz0s.png)
(The mass of the particles is same)
![v'_(x) = 2200 - 1414.214 = 785.786 m/s](https://img.qammunity.org/2020/formulas/physics/college/tz2mqartsv9l5gyrq1zd29layt6nl091pk.png)
Now, by the law of conservation of momentum for vertical axis:
![mu_(y) + m'u'_(y) = mv_(y) + m'v'_(y)](https://img.qammunity.org/2020/formulas/physics/college/kb3aw4hohofjpc6uecwlshhzrvlizse4zg.png)
(The mass of the particles is same)
![u_(y) + u'_(y) = v_(y) + v'_(y)](https://img.qammunity.org/2020/formulas/physics/college/7arzjn96pf7pq9f290yomjcav2c3bknwot.png)
![0 = v_(y) + v'_(y)](https://img.qammunity.org/2020/formulas/physics/college/k04069ndtn6gyjpfjaiwr5zfr5x2ddtbnc.png)
(since, initially, there's no vertical component of velocity)
(decreasing)
velocity, v =
![\sqrt{v^(2)_(x) + v^(2)_(y)}](https://img.qammunity.org/2020/formulas/physics/college/ojfs0wayqxneqjm4698zxd2qzf3ugclb5j.png)
v =
![\sqrt{(785.786)^(2) + (1414.214)^(2)} = 1617.856 m/s](https://img.qammunity.org/2020/formulas/physics/college/yb4xh9lp0s2fnsa9q1sziifclrjnlpdqgz.png)