Answer:
The zeros of the polynomial function are 1, -3, 3+i and 3-i.
Explanation:
The given function is
![P(x)=x^4-4x^3-5x^2+38x-30](https://img.qammunity.org/2020/formulas/mathematics/college/wokfgbhh586qg56os0igrkw3zyo1d7fb80.png)
We can find a zero of the given function by hit and trial method.
Substitute x=1 in the given function.
![P(1)=(1)^4-4(1)^3-5(1)^2+38(1)-30](https://img.qammunity.org/2020/formulas/mathematics/college/wsej2saln4gtf95elt9xro5t2ge9xcohsy.png)
![P(1)=0](https://img.qammunity.org/2020/formulas/mathematics/college/zu8n0a2sug09fauyltc3korbngzljnvi2l.png)
The value of function is 0 at x=1 it means (x-1) is a factor of given function.
Substitute x=-3 in the given function.
![P(-3)=(-3)^4-4(-3)^3-5(-3)^2+38(-3)-30](https://img.qammunity.org/2020/formulas/mathematics/college/q42mzgywkqw8djzb782jo3h73vfg4pj7fi.png)
![P(-3)=0](https://img.qammunity.org/2020/formulas/mathematics/college/jqxzpeuo6miurlve96ed199rfprdoz7qqi.png)
The value of function is 0 at x=-3 it means (x+3) is a factor of given function.
![(x-1)(x+3)=x^2 + 2 x - 3](https://img.qammunity.org/2020/formulas/mathematics/college/7avv8x9b1sis4gr2gz2y5t6li2vfyyelzh.png)
Divide the given function by
, to get remaining factors.
![(x^4-4x^3-5x^2+38x-30)/(x^2 + 2 x - 3)=x^2 - 6 x + 10](https://img.qammunity.org/2020/formulas/mathematics/college/g4kwko4q734jj38gi258dm41s4h8qp13f7.png)
So, the factor form of given function is
![P(x)=(x - 1) (x + 3) (x^2 - 6 x + 10)](https://img.qammunity.org/2020/formulas/mathematics/college/8nnn3vs3x2orhi5qrkdqx36ccu5mn2mslf.png)
Quadratic formula: If a quadratic equation is
, then
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ab45cdhbeliwcal3naam0rctuj1s2ka8cv.png)
Using quadratic formula find the zeroes of
.
![x=(-(-6)\pm √((-6)^2-4(1)(10)))/(2(1))](https://img.qammunity.org/2020/formulas/mathematics/college/ufuw5z338yetu26ofy9aqt56qca8njfa45.png)
![x=(6\pm √(-4))/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/391pvnr7olkk5qd2jahststu4zjym79000.png)
![[\because √(-1)=i]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7t7d5c5krhm8hxlkwuabv87yojfn9bl2p8.png)
![x=3\pm i](https://img.qammunity.org/2020/formulas/mathematics/college/ryci17er09egzp606qahswvgcpza7obnzu.png)
Therefore the zeros of the polynomial function are 1, -3, 3+i and 3-i.