142k views
5 votes
Find all the zeros of the polynomial function P(x) x^4-4x^3 -5x^2+38x- 30

1 Answer

4 votes

Answer:

The zeros of the polynomial function are 1, -3, 3+i and 3-i.

Explanation:

The given function is


P(x)=x^4-4x^3-5x^2+38x-30

We can find a zero of the given function by hit and trial method.

Substitute x=1 in the given function.


P(1)=(1)^4-4(1)^3-5(1)^2+38(1)-30


P(1)=0

The value of function is 0 at x=1 it means (x-1) is a factor of given function.

Substitute x=-3 in the given function.


P(-3)=(-3)^4-4(-3)^3-5(-3)^2+38(-3)-30


P(-3)=0

The value of function is 0 at x=-3 it means (x+3) is a factor of given function.


(x-1)(x+3)=x^2 + 2 x - 3

Divide the given function by
x^2 + 2 x - 3, to get remaining factors.


(x^4-4x^3-5x^2+38x-30)/(x^2 + 2 x - 3)=x^2 - 6 x + 10

So, the factor form of given function is


P(x)=(x - 1) (x + 3) (x^2 - 6 x + 10)

Quadratic formula: If a quadratic equation is
ax^2+bx+c=0, then


x=(-b\pm √(b^2-4ac))/(2a)

Using quadratic formula find the zeroes of
x^2 - 6 x + 10.


x=(-(-6)\pm √((-6)^2-4(1)(10)))/(2(1))


x=(6\pm √(-4))/(2)


x=(6\pm 2i)/(2)
[\because √(-1)=i]


x=3\pm i

Therefore the zeros of the polynomial function are 1, -3, 3+i and 3-i.

User Jsmith
by
5.2k points