Answer:
The angle of the corresponding refracted ray is 34.84°
Step-by-step explanation:
Given that,
Refractive index of water n= 1.33
Refractive index of glass n= 1.52
Incident angle = 30.0°
We need to calculate the refracted angle
Using formula of Snell's law
![n_(i)\sin i=n_(r)\sin r](https://img.qammunity.org/2020/formulas/physics/college/723dp985s8hk7qdj6olngf1dhyxu0om7rt.png)
Put the value into the formula
![\sin r=(n_(i)\sin i)/(n_(r))](https://img.qammunity.org/2020/formulas/physics/college/47esndsyhm6xbd3r6wbcmjvgt6n3b3al2e.png)
![\sin r=(1.52*\sin30)/(1.33)](https://img.qammunity.org/2020/formulas/physics/college/7i3jhs7wryeisvl5cq9l17xsp0qmvcdj34.png)
![\sin r=0.5714](https://img.qammunity.org/2020/formulas/physics/college/zlaazer066vl7bw54bj2740dqq1qjj9grp.png)
![r=sin^(-1)0.5714](https://img.qammunity.org/2020/formulas/physics/college/h7q8l369d31wkf1t32s0yc7wswtu7w9ai8.png)
![r = 34.84^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/o9hh5fv24t9vgb98hj5u8csnfcm5yyq8ef.png)
Hence, The angle of the corresponding refracted ray is 34.84°