Answer:
![(x-2)^(2)+(y-4)^(2)=25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tod8d9qadckjmts0wiuxfszo78cs86cqaq.png)
Explanation:
step 1
Find the diameter of the circle
the formula to calculate the distance between two points is equal to
![d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cludwa9rlbp5l9xccb2d39dpew3fngh0ii.png)
substitute the values
![d=\sqrt{(7-1)^(2)+(6+2)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q4dpp7ylxu3m6br7qqhiho5luhz51ugcv4.png)
![d=\sqrt{(6)^(2)+(8)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e2rwdpd0yug0b4mw775t6e8odtux0ejr9y.png)
![d=√(100)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ztkg865tzyjwt5vt9af8fy80q6xmf2euo.png)
![d=10\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/20p2zk4mcpzlt84kh18m8ndqg1wam8pxb7.png)
The radius is half the diameter
so
![r=10/2=5\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2ziqnyumatrnuyf37a8mzmmw4fc2a1948u.png)
step 2
Find the center of the circle
the center of the circle is the midpoint between the endpoints of the diameter
so
The center is
![((-2+6)/(2),(1+7)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5kf2idd7463iwlkvx3sudq38qjvm8f8qqh.png)
![(2,4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n5lgwg6up5hsloc1mv7f4m2jy7xaa9ytzk.png)
step 3
Find the equation of the circle
The equation of the circle is
![(x-h)^(2)+(y-k)^(2)=r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pef6vup9m8fe069mn7ia9hgp8m0ly3p5um.png)
substitute the values
![(x-2)^(2)+(y-4)^(2)=5^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8djgpjk7wk6lxxfyt5cn9f6y475w1dbz5p.png)
![(x-2)^(2)+(y-4)^(2)=25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tod8d9qadckjmts0wiuxfszo78cs86cqaq.png)